

AN SPX BRAND



**DHW SERIES** 



# **PROTECT YOUR AIR SYSTEM**

Hankison's DHW Series Pressure-Swing Desiccant Air Dryers protect air systems exposed to temperatures below freezing. The fully enclosed wall-mounted package delivers dew points of ISO 8573.1 Class 1 (-100°F, -73°C) and Class 2 (-40°F, -40°C) with guaranteed flow rates of 7 to 50 scfm (12 to 85 nm<sup>3</sup>/h). Applications including labs, hospitals, and high-tech installations all benefit from the clean, dry air, improved productivity, and more floor space provided by Hankison's DHW Series.

# **TECHNOLOGY AT A GLANCE...**

- Consistent outlet pressure dew points desiccant beds and cycle time optimized to produce 40°F (-40°C) pressure dew point at standard flow rating *lequals an atmospheric dew point of -71°F (-57°C)J or 100°F (-73°C) pressure dew point at reduced flow rating lequals an atmospheric dew point of -122°F (-86°C)J*
- Minimum purge air usage saving the heat of adsorption maximizes the moisture holding capacity of the purge air, minimizing the amount required
- Long desiccant life beds sized to prevent fluidization plus slow and complete regeneration prevent desiccant movement and deterioration
- Heavy duty purge exhaust muffler for quiet operation
- · Non-lubricated, soft seated control valves



# **DHW SERIES SPECIFICATIONS**

# **HOW IT WORKS**

See Figure 1. Compressed air enters the dryer and is directed to Tower 1 by valve (A), and then to the dryer outlet through shuttle valve (B). A portion of the dried air is throttled to near atmospheric pressure by means of orifice (C). This extremely dry, low pressure air flows through and regenerates the desiccant in Tower 2 and is exhausted through purge/repressurization valve (D) and exhaust muffler (E) to atmosphere. After a set time, the automatic solid state timer closes purge/repressurization valve (D) allowing Tower 2 to repressurize slowly. At the end of 2 minutes, valve (A) shifts and purge/repressurization valve (D) reopens. See Figure 2. The main air flow is now dried by Tower 2 while Tower 1 is being regenerated.





### **DHW Series Product Specifications**

| Model  |      |         | Dime |       | In/Out | We    | ight        |     |    |
|--------|------|---------|------|-------|--------|-------|-------------|-----|----|
|        | Н    |         | W    |       | D      |       | Connections |     |    |
|        | in   | mm      | in   | mm    | in     | mm    | NPT         | lbs | kg |
| DHW-7  | 30.5 | 774.7   | 17.5 | 444.5 | 6.7    | 170.2 | 1/2"        | 55  | 25 |
| DHW-13 | 30.5 | 774.7   | 17.5 | 444.5 | 6.7    | 170.2 | 1/2"        | 60  | 27 |
| DHW-20 | 30.5 | 774.7   | 17.5 | 444.5 | 6.7    | 170.2 | 1/2"        | 71  | 32 |
| DHW-25 | 30.5 | 774.7   | 24.4 | 619.8 | 8.6    | 218.4 | 1/2"        | 93  | 42 |
| DHW-30 | 30.5 | 774.7   | 24.4 | 619.8 | 8.6    | 218.4 | 1/2"        | 93  | 42 |
| DHW-35 | 30.5 | 774.7   | 24.4 | 619.8 | 8.6    | 218.4 | 1/2"        | 99  | 45 |
| DHW-50 | 43.0 | 1,092.2 | 24.4 | 619.8 | 8.5    | 215.9 | 1/2"        | 132 | 60 |

#### **Capacity Correction Factors**

- To determine maximum inlet flow at inlet pressures other than 100 psig (7 kg/cm<sup>2</sup>), multiply inlet flow from Table 1 by multiplier A from Table 2 that corresponds to system pressure at inlet of dryer.
- To determine purge flow at inlet pressures other than 100 psig (7 kg/cm<sup>2</sup>), multiply purge flow at 100 psig (7 kg/cm<sup>2</sup>), from Table 1 by multiplier B from Table 2 that corresponds to system pressure at inlet of dryer.
- To determine outlet flow capacity, subtract purge flow from inlet flow.

### Table 1 - Inlet & Purge flows @ 100 psig Table 2 - Inlet Pressure

| Model         | Inlet Flo | w Ratin | g¹ scfm ( | (nm³/h) | Purg | e Flow <sup>2</sup> | scfm (n | m³/h) |
|---------------|-----------|---------|-----------|---------|------|---------------------|---------|-------|
|               | -40°F     | -40°C   | -100°F    | -73°C   | Avei | age                 | Maxii   | num   |
| DHW-7         | 7.3       | 12      | 5.6       | 9.5     | 1.5  | 2.5                 | 2.0     | 3.4   |
| DHW-13        | 13        | 22      | 10        | 17      | 2.7  | 4.6                 | 3.7     | 6.3   |
| <b>DHW-20</b> | 20        | 34      | 16        | 27      | 4.2  | 7.1                 | 5.5     | 9.3   |
| DHW-25        | 25        | 42      | 20        | 34      | 5.1  | 8.7                 | 6.8     | 12    |
| <b>DHW-30</b> | 30        | 51      | 24        | 41      | 6.2  | 11                  | 8.2     | 14    |
| <b>DHW-35</b> | 35        | 59      | 28        | 48      | 7.2  | 12                  | 9.6     | 16    |
| <b>DHW-50</b> | 50        | 85      | 40        | 68      | 10.2 | 17                  | 13.6    | 23    |

1 Inlet flows are established in accordance with CAGI (Compressed Air and Gas Institute) standard ADF-200, Dual Stage Regenerative Desiccant Compressed Air Dryers - Methods for Testing and Rating. Conditions for rating dryers are: inlet pressure - 100 psig (7 kg/cm<sup>2</sup>); inlet temperature - saturated at 100°F (38°C).

2 Average Purge Flow is the total amount of air used to purge and repressurize off-stream towers averaged over the cycle time. Maximum Purge Flow is the flow rate through the off-stream tower during that portion of the cycle the purge/repressurization valve is open.

| Inlet<br>Pressure | psig<br>kg/cm² | 50<br>3.5 | 70<br>4.9 | 90<br>6.3 | 100<br>7.0 | 110<br>7.7 | 120<br>8.4 | 130<br>9.1 | 150<br>10.5 |
|-------------------|----------------|-----------|-----------|-----------|------------|------------|------------|------------|-------------|
| Multip            | lier A         | 0.31      | 0.54      | 0.83      | 1.00       | 1.09       | 1.17       | 1.26       | 1.44        |
| Multip            | lier B         | 0.55      | 0.73      | 0.91      | 1.00       | 1.09       | 1.17       | 1.26       | 1.44        |



## **OUR GLOBAL NETWORK...**

#### **SPX Flow Technology North America**

 Hankison Headquarters

 1000 PHILADELPHIA STREET

 CANONSBURG, PA 15317-1700 USA

 TEL | 724 | 745 | 1555
 FAX | 724 | 745 | 6040

#### Hankison Rental

1486 CHAMPION DRIVE TERRELL, TX 75160 U.S.A. TEL | 800 | 379 | 3711 FAX | 972 | 563 | 9991

### SPX Flow Technology Canada

 Hankison Canada

 1415 CALIFORNIA AVENUE

 BROCKVILLE, ON, CANADA K6V 7H7

 TEL | 800 | 267 | 3884
 FAX | 613 | 345 | 7240

#### SPX Flow Technology Mexico Hankison México

AVENIDA CONSTITUCIÓN #2165 -B COLONIA JULIÁN CARRILLO SAN LUIS POTOSÍ, S.L.P. C.P. 78250 MÉXICO TEL | +52 | 444 | 815 | 7074 FAX | +52 | 444 | 815 | 8295

### SPX Flow Technology South America

Hankison Brazil RUA JOAO DAPRAT, 231 B 09600-010-SÃO BERNARDO DO CAMPO, SP BRAZIL TEL |+55 | 19 | 3276 | 8266 FAX |+55 | 19 | 3276 | 8266

### SPX Flow Technology Europe

Hankison Ireland KILLARNEY, CO KERRY IRELAND TEL | +353 | 6466 | 33322 FAX | +353 | 6466 | 33371

# Hankison Netherlands

MUNNIKENHEIWEG 41 POSTBUS 570 4870 NE ETTEN-LEUR NETHERLANDS TEL | +31 | 76 | 5085800 FAX | +31 | 76 | 5085800

 Hankison Germany

 KONRAD-ZUSE-STR. 25

 D-47445 MOERS GERMANY

 TEL | +49 | 2841 | 8190

 FAX | +49 | 2841 | 8712

#### **SPX Flow Technology India**

 SPX India PVT, LTD

 MANUFACTURING G-72/73

 RIICO INDUSTRIAL AREA

 MANSAROVAR, RAJASTHAN

 JAIPUR 302 020

 INDIA

 TEL | +91 | 141 | 2396759

 FAX | +91 | 141 | 2395048

### SPX Flow Technology Asia

SPX China

5TH FLOOR, PARK CENTER, NO.1568 HUASHAN ROAD, SHANCHAI CHINA TEL | +86 | 021 | 2208 | 5840 FAX | +86 | 021 | 2208 | 5866

#### SPX Flow Technology Korea

#940-1 YERIM-RI JEONGGWAN-MYEON GIJANG-GUN BUSAN REP OF KOREA TEL |+82 | 51 | 728 | 5360 FAX |+82 | 51 | 728 | 5359



HANKISON, AN SPX BRAND 1000 PHILADELPHIA STREET CANONSBURG, PA 15317-1700 U.S.A. TEL | 724 | 745 | 1555 FAX | 724 | 745 | 6040 Email: hankison.sales@spx.com www.hankisonintl.com



Bulletin DHW-NA\_3 © 2010 SPX Corporation. All rights reserved.